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678. Show that
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where Iy and Yv are Bessel functions of the first and second kind, respec-—

tively, of order v 2 0.

(S.W. RIENSTRA)

Solutions by J. BOERSMA, P.J. DE DOELDER, A.A. JAGERS, S.W. RIENSTRA.

The solutions by P.J. DE DOELDER, A.A. JAGERS are more or less similar to
the one by J. BOERSMA.

SOLUTION by J. BOERSMA.
By means of the Wronskian-type relations ([1], form. 3.63 (1),(6))
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it is readily seen that
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The first arctan-function is increasing for x > 0; its value at x = 0 is
-m/2 and the function jumps from +m/2 to -m/2 at the successive positive

zeros jv . 1, 2,3,..., of Jv(x). Likewise, arctan (Y;(x)/J;(x))is de-
b4
creasing for 0 < x < v and increasing for x > v, starting with the value

+m/2 at x = 0 if v > 0. The second arctan-function jumps from +7/2 to -w/2
at the successive positive zeros j; n,n==l,2,3,..., of J;(x); here, it is

used that j; > v, ([1]1, form. 15.3(1)).

1
By means of these properties of the arctan-functions it is easily found

that



182 SOLUTIONS

i

v,n
2 1 .
J [l T = —E——————E———]dx =3, , " 0
b

0 J\)(X) +Yv(X)

j! _.2,.2

f A 2 -y /x dx = 3' - (n-Dm, v >0
J X 2 2 v,n

0 {J;(X)} +{Y$(x)} ! >

In the latter integrals let n > « , then by means of McMahon's expansions

(2], form. 9.5.12, 9.5.13)
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the results to be shown are obvious. The second result with v = 0 follows

from the first result with v = 1, since Jé(x) = - J](x), Yé(x) = - Y](X)-
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SOLUTION. (Based on S.W. RIENSTRA's solution).
The modified Bessel function of the third kind Kv(z), v = 0, has ([1], p. 62)

no zeros for which |arg z| < im. Therefore we have

where C is the contour shown in the figure.

Ri Using ([2], form. 9.7.2, 9.7.4, 9.6.9, 9.6.8)
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we obtain
K'(z)
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The contribution to 7%—fc(l +—1L——>(iz of the two parts of C along the

K, (2)
imaginary axis equals
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where ([1], §7.2, form. (15), (16); §7.11, form. (30))
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With these results it follows that
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To derive formula b) we use the fact that the function K;(z), v 2 0, has no

zeros in the right-half of the complex plane ([1], pp. 62-63).

Hence we have
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it follows from (1), (2) and (3) that
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Furthermore, . e
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where ([1], §7.2, form. (15), (16))

K (iy) K} (~iy) = !L-(J\')(y))z - (Y\')(y))z}.

The result to be proved now follows in an obvious manner.
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